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Abstract. It is shown that the application of a self-consistent projection-operator method,

- developed recently by the auvthor, makes possible a complete and gauge-invariant treatment
of spontaneously decaying atomic state. All the shortcomings of the Weisskopf-Wigner gauge-
dependent method (Markov approximation and the neglect of virtual transition, retardation and
electron-spin effects) are semoved. After deriving a gauge-invariant equation of motion for the
decaying state, a new physical interaction picture {in which the unobservable interaction of the
free electron with the vacuum radiation field is eliminated) is introduced. In this new interaction
picture, apart from a natural solution of the renormalization problem, explicit finite analytic
results for the whole non-Markovian Lyman-o spontaneons decay are derived. Furthermore, a
quasi-Lorentzian expression for the radiative line shape containing the correct (complete) finite
non-relativistic frequency shift, stemming from the Lamb shifts of both levels 18 and 2P, 15
calculated. .

1. Introdaction

The sixty-year-old problem of spontaneously decaying atomic states has been treated by
many authors in the past. (Because of the very large number of papers dealing with the
subject, here we quote only those papers which are relevant to the problem treated in the
present paper. Further references can be found in the quoted papers and books.) The
shoricomings contained in the Weisskopf~Wigner method (gauge dependence, two-level-
atom, rotating-wave, dipofe and-Markov approximations, and the neglect of electron-spin
effects) [1, 2] were removed in various degrees. Thus, for example within the two-level-atom
approximation, it has been pointed out that the dipole approximation (neglect of retardation
effects) requires the introduction of an unnatural cutoff frequency and leads to incorrect
asymptotic resulis [3]. By removing the dipole and Markov approximation some authors
calculated asymptotic deviations from exponential decay for a two-level atom (see e.g.,
[3-51, and further references quoted in these works). In the case of Lyman-« spontaneous
emission, a complete non-Markovian freatment including deviations from exponential decay
for finite times within the scope of the two-level atom has been presented in our previous
paper [6). Without investigating the time development of a decaying state, the line shape
has been studied by Arnous and Heitler [7] (who applied a very cumbersome formalism)
and by Low [8] who used a covariant S-matrix method. However, the non-Markovian
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effects, which, as will be shown in this paper, change the Lorenizian frequency spectrum
to a quasi-Lorentzian one, were not included in their calculations [7, 8].

The objective of this paper is to present a complete {gauge-invariant) treatment of the
spontaneously decaying state. This treatment, unlike all previous treatments in the literature,
should yield complete results for the non-Markovian time behaviour and radiative line shape
including virtnal transition effects. In order to achieve this, the two-level approximation
(appearing in [1-6]), which leads to an incomplete frequency (Lamb) shift (stemming only
from the real transition to the lower-lying level), should be avoided in our treatment. In
other words, the aim of the present paper is to include the whole discrete and continuous
atomic spectrum in our calculations. However, since the inclusion of virtual (*energy-
non-conserving’} transitions automatically leads to divergent results, the renormalization
problem has to be solved first, by using a consistent method. This has been done in
our previous paper [9] by applying a self-consistent projection-operator method (SCPOM)
developed recently [10,11].

The application of the SCPOM makes it possible to introduce a new physical real-
transition interaction picture, in which the dynamics caused by virtual transitions and the
unobservable interaction of the free electron with the vacuum radiation field is eliminated,
The latter, as has been shown in [9], leads to a natural and unambiguous solution of the
longstanding rerormalization problem in non-relativistic quantum electrodynamics without
using the conventional concept of mass renormalization, which, as pointed out by Au and
Feinberg [12], is not unambiguous. The main differences between the mass renormalization
method and our method can be summarized as follows.

(i} In our Hamiltonian, from the very beginning, only the experimentally observable
(physical) mass appears (we do not differentiate between observable, bare and electromag-
netic mass).

(ii) No unnatural mass-renormalization counter-term (calculated in the second order in
the charge e) has to be included in the Hamiltonian.

(iii) By introducing a new interaction picture, in which the experimentally unobservable
interaction of the free electron with the vacunm radiation field is eliminated, an unambignous
and self-consistent renormalization is automatically performed.

In the present paper, by introducing this new physical interaction picture (without
making dipole, Markov and two-level-atom approximations), including the spin-radiation-
field interaction term and the term (¢?/2mc®)A%(R) in the Hamiltonian (both of which
were neglected in [1-7]) and, finally, taking into account the effect of a unitary gauge
transformation (which was not done in [1-7]), a gauge-invariant, rigorous znalytic result
for non-Markovian spontaneous Lyman-o decay is obtained. This result, containing the
exponentially decaying term and a term describing the deviations from exponential decay,
gives a complete description of the time evolution of the probability amplitude for finding
the atom in an unstable state.

Unlike all treatments in the literature [1-6] (and references quoted thersin), our
exponentially decaying term contains the complete 2P — 18 frequency (Lamb) shift, which
is finite (cutoff-independent) and can be explicitly evaluated by taking into account the
whole discrete and continuous atomic spectrum [9].

The paper is organized as follows. In section 2, by applying the SCPOM, a gauge-
invariant treatment of the whole time evolution of a spontaneously decaying atomic state is
presented. In the new physical interaction picture, without using the mass-renormalization
concept, finite expressions for energy-level (Lamb) shifts are obtained. In section 3 the
obtained resuits are applied for obtaining a complete description of the time evolution in
the case of the Lyman-¢ spontaneous emission. In section 4 a conclusion is drawn. In
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appendix A the gauge invariance of a level-shift expression, appearing in the calculations
in section 2, is proved.

2. A gauge-invariant treatment of the spontaneous emission based on the SCPOM

The Hamiltonians for the unperturbed hydrogenic atom and the quantized radiation field (in
the Coulomb gauge) read as

a 2
HA = [;—m + V(R)] ®l, HY=he), f Pleka™ (&, Ma~(k, 1) 2.1
=1

where I is the unit operator in the spin Hilbert space, a*(k, \) are the photon creation
and annihilation operators for the mode (k,A) and X is the poIanzauon index. The total
Hamiltonian H reads as

H=H+H HY = HA 4 gR (2.2)

and the interaction Hamiltonian between the atom and the radiation field is given by

3
=2 H ' 23)
=1
I 2 1 € I eh
Hl = AX(R) Hi=——A®R)-P Hi=——c.-BR) @4
chz . me 2mc
where
' i 2
A(R) = —‘/2? > f dPrk)y ey, [a” (k, )RR 4 at (K, 1)eT*E] (2.5)
A=l )

is the vector potential, o is the Pauli spin operator, ey ; is the polarization vector and
B =V x A is the magnetic field.

We now introduce the interaction picture and separate the interaction Hamiltonian into
two parts:

Hl(t) = e(i/ﬁ)H"rHIe—(ifﬁ}Hu: — c(ifﬁ}H“r[HRT + Hw]e‘ﬁfﬁ“‘f“‘
=HM®O +HT @) (2.6)

where H® is the ‘real-transition’ part (containing the ‘energy-conserving’ transitions to
Jower-lying atomic levels) leading to the decay of a state, and H V7 is the ‘virtual-transition’
part {containing the ‘energy-non-conserving’ transitions) leading to the energy-level (Lamb)
shifts.

The proof of the gauge invariance will be performed in a manner similar to that of
Aharonov and Au [13], who have proven a general theorem, whose results are also applicable
to the present case. Therefore, in order to prove the gauge independence of our results,
instead of H, analogously as in [13], we will use the unitary gauge-transformed Hamiltonian
H in what follows:

i = /ebex gre~Gretex = g 4 1 @7
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where

e[x, x, H°l] (2.8)

Bl = B+ —efx, H°] + ~elx, HY) -

with a time-independent gauge function y(R). Such gauge functions are very often used
in quantum optics (see e.g. [14, 15] and references quoted therein).
In the interaction picture we again decompose the gauge-transformed interaction
Hamiltonian into two parts:
A1) = /WA Fig~GMAE% _ FRT 1y 4 VT () (2.9)

where
BRT(r) = OMH {HKT +Lelx, H“]} e~ (/mH' (2.10)
ch

is the ‘real-transition’ Hamiltonian causing real transitions to lower-lying atomic levels, and

BVI(r) = 005 {Hw + cl—he[x, H + C%e[x, 5€1X, (X, H"]]} e /MEs

2.11)

is the ‘virtual-transition’ Hamiltonian causing virtual transitions (including the ‘energy-non-
conserving’ transitions to higher-lying levels).

To concentrate our investigations on the dynamics caused by the ‘real-transition’
Hamiltonian A" , we have to introduce a new ‘real-transition’ interaction picture (RTIP) in
which the dynam:cs caused by the ‘virtual-transition” Hamiltonian HVT is eliminated. The
dynamics caused by HVT is described by the time-development operator Jyr(z, 0):

dhvr(t,0) _ i zyrs
— = ﬁH @)Uyt (2, 0). (2.12)
In the RTIP the Hamiltonian HXT reads as

B, 0 = Ok, 0 BR (1) yr @, 0). (2.13)

Furthermore, the Schrédinger equation in the RTIP takes the form

dlg (@) 1 zpr
TR hH {£, DY) (2.14)
where
[ (®) = |nlm, my, v) = Inlm) ® |m;) & |v) (2.15)

is the decaying state, with the energy eigenvalue E, (n,!, m, m, are the principal, angular
momentum, magnetic and spin-magnetic quantum numbers, respectively, and v denotes the
vacuum state of the radiation field). Then, the application of the scpoM [10,11] to the
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above Schridinger equation leads to an exact closed equation of motion for the reduced
state vector Ply()}:

dPl¥() _ i =gt
—a = hPH @ Py
!
- hlz f &' PEN ¢, )T, U — PIEN(, YPIY (1)) (2.16)
0
x H
T, t)="Texp [— % f de"(1 — PYART ", r”)] 2.17)
3 .
where
P = |nlm, m;, v){nlm, m;, v| ; (2.18)

is our projection operator, 7 is the Dyson time-ordering operator, I' is the unit operator in
the product Hilbert space Ha ® Hy of the atom and radiation field.

In equation (2.16) it can be easily shown that the application of the second-order
approximation in the interaction (or in the charge e}, the so-called Borr. approximation
(BA), which is equivalent to the self-consistent truncation condition [10, 11],

(I -PYE @, NI -P)=0 (2.19)
leads to the restricted Hamiltonian {A¥T(¢, HJ5:
[AX(, 01 = PUEE, OPHX ()15 — PYOyr(t, 0I5 — P) +HC (2.20)

which acts in the subspace 5 defined by the state vectors {(HXV) | (0)),! = 0,1}. In

obtaining the above equation we used the fact that as a consequence of the self-consistent

truncation condition, the gauge-dependent term in H¥7(#) (cf equation (2.10)) vanishes.
The expression

PUyr(t, OYP == PUvr(z, 0)|nlm, ms, v){nim, m;, v| (2.21)

can be calculated from the equation of motion for the reduced state vector Pl Yi(t)} =
PUyt(2, 0)|nlm, mg, v} (which can be obtained by applying the SCPOM):

PO i
o = 2 PAT PN
¥
) (alz) [ &ePEOTnt,t - 00 - P~ 2PV = )
(]

_ 2.22)
~— i I . )
Tyr(t, 2 — 1) =T exp [_ by f dar'(l - P)Hw(t’)] (2.23)

h =1 .

The application of the BA in equation (2.22), which is equivalent to the self-consistent
truncation condition [10, 11],

(I-PYE")I~P)=0 ' (2.24)
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leads to the restricted Hamiltonian:

[AVTF = BT + B () (2.25)
VT

g=p { —e[x, H™]- ZCzhzez[x, [x. HO]]] P (226)

FI;”(I) = c(i/ﬁ)H"r ﬁ;l'l'e-—-(i/ﬁ)H“: (2.27)

B =P+ et w0}ty - Py 410 2.28)

with the unit operator F§p acting in the subspace M3, defined by the state vectors
{H @), k =0,1}.

The above equation (2.22) in the BA and so-called Markov approximation (which consists
of neglecting memory effects and replacing the upper limit of the time integration with oo by
introducing a damping factor ™" in the integral (7 — 0 after carrying out the integration))
[9-11] reduces to

dPly VTt

PN _ iy a BT Ply o) (229)
AE0 = AETH + AEVT? (2.30)
AEJN = (nlm, mg, | H " inlm, ms, v) 2.31)
AEYT2 _ lim (nlm, m, vl BT mﬁ;’f |nim, m,, v) (2.32)

where AE:::.E“”) (subscript m; is dropped) is the unrenormalized radiative energy-level
(Lamb) shift stemming from virtual-transition Hamﬂtoman HYT, As will be shown in
the appendix the expression AE ™ = AE,E, U0 appearing in equation (2.29), is gauge-
independent. Therefore, the expression PUF; w12, OYP is also gauge-independent and reduces

to
PUE(t, OP = PUL(t, 0)P = e/MAEL"p, (2.33)

However, since Uyr(t, 0) contains the physically unobservable dynamics of the free
electron interacting with the radiation field, a new ‘physical’ (bound-electron) interaction
picture, in which this dynamics is eliminated, has to be introduced. This, as has been
shown in [9], leads to a quite natural selution of the renormalization problem. That is to
say, without using the conventional mass-renormalization concept, which is not unambiguous
[12], finite Lamb-shift results can be obtained. The time-development operator describing
the unobservable dynamics of the free electron is given by

AUfee(t, 0)

— l free
" = ﬁH () Ukee (2, 0) (2.34)

where

o i [P (TP
H (t)-Eexp E E-I-HR t Hexp —E '2;+HR t]. (235)
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In the BA and Markov approximation, the equation of motion for Ply™c(r)) =
PUgee(t, M |nim, m;, v} describing the time evolution of the reduced state vector vnder
the influence of the free-electron—field interaction [9] reads as

PWEO) _ Cimarizpiueo) (2.36)
where AE}:‘,‘,,‘: is the self-energy of the free electron:

AEDe = AET! 4 AETTC? (2.37)
with

AERe (nlm[-i%Azlnlm) (2.38)

AETE2 _ (27?);;20 i3 3 f GK bl Geashelnlm) (2.39)

Giee = (-—1)[K2/(2m) ~ (K« P)/m+cK + in]“ (2.40)

K =hk hi=e, P hy = 1o - (hk X er). (2.41)

Now we can introduce the physical interaction picture:

Pl VT (e = /PAEED VT 1)), (242)
In this new picture equation (2.33) reduces to

PUE(E, 0P = VDo p (2.43)
where AE - 15 the ‘renormalized’ Lamb shift stemming from virtual transitions:

AENY = AE,, — AERL (2.44)
with AE,;, as the total Lamb shift [9]
AEyy = m M;ezljz f E2 (nlm|he(Gooums — GieeVelninm) (2.45)
where

Gromd = [Es — (P — K)}/(2m) — V(R) - cK +ing™! (2.46)
and with AERT as the Lamb shift stemming from real transitions to lower-lying levels:

AEST = ’21_% (nlm, my, u|HRTE——;IH-:-—HRT|nzm mg, v}. (2.47)
In obtaining equation (2.45) we used the fact that because

AEy,' = AE (2.48)

(see equations (2.31), (2.38) and (2.26)) the term A% does not give any contribution to the
total Lamb shift.

Since it can be shown, quite similarly to the above, that the expression
(IS — P)Uyr(t, 0)(IS — P) is also gauge-independent, it follows, finally, that the restricted
real-transition Hamiltonian given by equation (2.20) is gauge-independent as well. There-
fore, the equation of motion for the reduced state vector, equation (2.16€), takes the following
reduced gauge-invariant form in the BA:

Pl _ 1 S K o
W R f de"PLH™ ¢, DT = PUHT(, )P PIY (). (2.49)

In the next section this equation will be applied to the case of spontaneous Lyman-o decay.
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3. Complete solution for the time evelution in the case of Lyman-a spontaneous
emission

Now, we will apply the equations and results derived in the preceding section to the case
of spontaneous Lyman-c (2P — 1S} decay:

YO =12P} @ |v)=In=2,1=1,m,m) @ |v) (3.1)

[18) = |n = 1,1 = 0, m = 0, m,). (3.2)
In our case the projection operator takes the form

P = |2P)(2P| ® [v){v] (3.3)

and the unit operator acting in the subspace #° reads as

IS =P+18)(18|® f dowlw) (@] (3.4)
0

where |w)} are the one-photon radiation-field states for a photon with the frequency w, and
the quantum numbers j = 1, m and 7 = 0 (electeic multipole field). Then, by inserting the
following equations (cf equation (2.43)):
PUL (2, OP = P2P, v|Ui(t, 0)12P, v} & Pe/MraER (3.5)
(IS — PYUyr(t, YIS — Py = (I° — Pye=/MibEs  AET =0  (3.6)

into equation (2.20), the restricted Hamiltonian (which follows in the BA) takes the reduced
form

[HY ¢, ) = f - dwHyp 15(w)e" @~ |2P) (18] ® |v}{w| + HC 3.7
0

where
wo= (1/R)(Ewp — Ei5)  @po=wp+ Aag’ Aadt = (1/R)AEYT — AE;5) (3.9)
and the transition matrix element Hap 15(w) is given by [16, 6]

Hop,15(0) = (A/2m) B (—i0 /) [1 + (0/ QP12 (3.9)
with A = y/wy (¥ is the Einstein coefficient for spontaneous Lyman-¢¢ transition) and

§2 = 3¢/(2ap) {ap is the Bohr radius). Therefore, equation (2.49) reduces to a closed
equation of motion for the probability amplitude

bae() = (2P| © [Pl¥ (1)) (3.10)
of finding the atom in the initial state |2P) and zero photons in the radiation field:

0 I3
P20 = am) [0 @) [ @ paon) b =1 (3.1
0 o
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where
2
fl@) = EJTZIHzP.IS(w)]z (3.12)

is the natural cutoff function. Since this equation is identical to equation (2.1) [6] (with the
significant difference that instead of g the virtual-transition corrected frequency &g has to
be used throughout), all equations in section II of [6] can be used in the present case as
well. This leads to the result

bap(t) = R(®) + D) | 3.13)
where
R(t) = (14 Ag)ei®ie -1t |Ag| < 10A (3.14)

is the residue of the so-called Weisskopf—Wigner pole (lying on the Riemann sheet —1):

By = @y + Awg —iy /2 + A, |Ayfu—] <4.1x 10713 (3.15)
11y 5. vy Q
Awy = Awy T + Awdt AT =L 22 _ 2 | = 3.16

describing the Markovian behaviour (exponential decay). Here Awp is the complete
frequency shift calculated in [9, 17]:

Awgf2m = AEp/h — AE1g/h = —8132.8 MHz 3.17)
AEg/h =8136.9 MHz AEsxp/h = 4.1 MHz. (3.18)

(h is the Planck constant). In the above equation (3.16) Aw®T is the Lamb shift stemming
from the real 2P — 1S transition and can be calculated directly in the usual second-order
perturbation theory as well:

|Hppis@)®* M

]
AER =hA RT=PV/ dp ———"—— =——1 3.19
E @ B Es—fo Ix (o) (3.19)

{Pv is the Cauchy principal value). The solution of the integral:
o0
Iw)y= | do
0

fl@)

(3.20)
w—u -

(which has been given in [6], equations (2.5)2.7)) yields precisely the result of equation

(3.16) for Awf" if u = wy is inserted. Further, D(¢) describes the non-Markovian behaviour
(deviation from exponential decay): '

A it (3.21)

DtYy=M{ + Ap(t) M@ = _237((.00 n Acuo)ztze

with M(¢) as the asymptotic main term and the error estimate:

|Ap()/ M) < 16.6 x 1072 t>107% s (3.22)
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Finally, as in section 5 of [18], by suitably deforming the path of integration in the
Laplace inversion expression for bap(#) (cf eguation (2.8) in [6]), the following integral
representation for bop(#) can be written down:

bop() = el fo " dwe " S(w) (3.23)

with a quasi-Lorentzian frequency spectrum
S(@) = (A27) f (@) /{[w — (wo + Aeo) + (A/27) T (@)F + (1/2) fH(w)} (3.24)
where both the decay rate Af(w) and the frequency shift

J (@) = I{) — inf(w) — [ {wo) — i flw)] (3.25)

(I(w) is given by equation (3.20)) depend on the the frequency . However, since these
frequency-dependent functions are multipled by a very small factor A & 1073, the effect is
weak and the usually used constant decay rate Af(wo) and J{wo} = 0 can be applied as
good approximations in a relatively large frequency interval around wp.

4. Conclusion

The following conclusions may be drawn. Here, we have presented a complete self-
consistent gauge-invariant treaiment of the single-atom spontaneous emission problem
{including unambiguous renormalization) within the scope of non-relativistic QED. For the
first time to our knowledge, by taking into account virtua! transitions and without ignoring
non-Markovian, retardation and electron-spin effects, a gauge-invariant analytic resuit for
the whole time evolution of the probability amplitude bop(2) for finding the atom in the
excited state |2P) has been derived. Moreover, in the BA it has been shown that, after
introducing the physical bound-electron interaction picture, the term A? does not contribute
at all, since, in the Ba, its contribution is the same for both bound- and free-electron cases.
The comparison of our results with those of previous papers treating the same problem,
without investigating the gauge invariance (see [1-6] and references quoted therein), shows
that, instead of the incomplete real-transition frequency shift Aw§' (appearing in these
papers), our present expressions for bap(t) (see equations (3.13)—(3.16)) and the radiative
line shape (see equation (3.24)) contain, for the first time, the correct (complete) finite non-
relativistic frequency shiff Awy, which agrees fairly good with the experiment [19]. The
comparison with the work of authors who treated only the radiative line shape [7, 8], without
investigating the time evolution of the decaying state, shows that the non-Markovian effects
(missing in [7,8]) led to a guasi-Lorentzian frequency spectrum in our equation (3.24),
where both the decay rate as well as the frequency shift depend on the frequency w.
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Appendix. Proof of gauge independence of expression AE )"

In this appendix we prove the gauge-independence of the expression AE.,"" appearing

in equation (2.30). It holds that

AE = AEYTO™ _ AgYT0e

nim

= (AEYT — AEYEYy £ (AEYT2 — AEVDY (A1)
ABVE = (p(OIEYTI®) 1Y (O) = Inim, my, v) (A2)
2

AE! ='(W(0)12;CZAZIW(0)> (A3)
SVT2 _ g ST SVT

'&Enfm _1!"1_1}}){1#(0)!‘:1[) En—HU+ii7Hb NI(O)} (A4)
VT.2 _ 13 VT VT

AEE = O e BT ) A5

2 -
VT _ € 424 1 YTy _ 2 0
BT =P o h s Tl B - P BT (49
BT = PUHT + —ely, HNU§; — P) +HC (A7)
YT = PHVI(I, — P) +HC. (AB)

By inserting equations (A6)}(A8) into equations (A2) and (A4), equation (Al) reduces to

—_1 _]_ VT7 _ 1 2, 0 _ i
AE = %ﬂ(iﬁ(o)l [Che[x,H i 72738 [x.[x, " ~ Ep m]]} [¥(0)}
. vo_ 1 i 0_p s
+,1]1_%(¢(0)IH T Cke[x.H E, —inll¢¥(O)
. _.L D — 3 s VT
+ }lﬂ(tﬁ(o)lchefx, H" — Ey —in] E _HO +inH 1% (0))
- i o_g it i o_p _;
+,§1_r)no(¢(0)lche[x, H —E, ln]E,, T che[x,H E,—in]|y(0))
(A9
where we used the identity
[x, ) =[x, H® — E, — in] (A10)

Since, in equation (A9), whenever H° — E, — in acts on [¢#(0)}, we can replace it by zero
in the limit  — 0, it follows immediately that

AE =0, *(AlLL)



274

J Seke

References

(1]
(2]
[3]
[4]
[5]
(6]
(71
(8]
191

{10]
(1]
(12]

(13]
(14]
[15]
[16]
17

(18]
f191

Weisskopf V F and Wigner E F 1930 Z. Phys. 63 54; 1930 Z. Phys. 65 18

Kiillen G 1958 Quanteneleltrodynamik, Handbuch der Physik vol 1, ed S Flligge (Berlin: Springer)

Seke J and Herfort W 1988 Phys. Rev. A 38 833

Robiscoe R T 1984 Phys. Letr. 100A 407

Gotldberger M L and Watson K M 1964 Collision Theory (New York: Wiley)

Seke T and Herfort W 1989 Phys. Rev. A 48 1926

Arnous E and Heitler W 1953 Proc. R. Sec. A 220 250

Low F E 1952 Phys. Rev. 88 53

Seke J 1992 J. Phys. A: Math. Gen. 25 5415,
Notice the errars in this paper: The numerical value for AE&_s(}u) /h In equation (39) shoeld read
—47.26 MHz and thig leads to following changes in the 2p-state Lamb-shift results: AEyy, /i = 4.1 MH=
in equation (44) and Av{(2s — 2p) = 1036.5 MHz instead of 1044.8 MHz in the line below eguation.

Seke J 1990 J, Phys. A: Math. Gen. 23 L61

Seke J 1991 J. Phys. A: Math. Gen. 24 2121

Au C K and Feinberg G 1974 Phys. Rev. A 9 1794; 1975 Addendum and Erratum: Phys, Rev. A 12 1722,
1733

Aharonov Y and Au C K 1979 Phys. Rev. A 20 1553

Cohen-Tannoudji C, Dupont-Roc J and Grynberg G 1989 Photons and Atoms (New York: Wiley)

Baxter C, Babiker M and Loundon R 1990 J. Mod. Opr. 37 635

Moses H E 1973 Phys. Rev. A 8 1710

Seke T and Mbdritsch M 1992 Nuovo Cimento D 14 1217,
Notice that in this paper the same errors occur as in [9].

Seke J 1992 J. Phys. A: Math. Gen. 25 691

Melntyre Id H, Beausoleil R G, Foot C J, Hildum E A, Couillaud B C and Hansch T W 1989 Phys. Rev. A
39 4591



