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Abstract. It is shown that the application of a self-consistent projection-operator method, 
developed recently by the author, makes possible a mmplete and gauge-invariant merit 
of spontaneously decaying atomic state. All the shoncomings of the Weisskopf-Wigner gauge- 
dependent method (hkkov approximation and the neglen of virtual transition, remdation and 
elecmn-spin effects) are removed. After deriving a gaupinvariant equation of motion for the 
decaying state, a new physical interaction piclure (in which the unobacrvable interaction of the 
free electron with the vacuum radiation field is eliminated) is inbcduced. In this new interadion 
p i c m  apart hom a natural solution of the renormalization problem, explicit finite analytic 
resulu for the whole non-Markovian L y m u  spontaneous decay are derived. Furthermore, a 
quasi-Lnmtzian expression for the radiative line shape containing the correct (complete) finite 
non-relativistic fquency shift, stemming from the Lamb shifts of both levels IS and ZP, is 
calculated. 

1. Introduction 

The sixty-year-old problem of spontaneously decaying atomic states has been treated by 
many authors in the past. (Because of the very large number of papers dealing with the 
subject, here we quote only those papers which are relevant to the problem treated in the 
present paper. Further references can be found in the quoted papers and books.) The 
shortcomings contained in the Weisskopf-Wigner method (gauge dependence, two-level- 
atom, rotating-wave, dipole and Markov approximations, and the neglect of electron-spin 
effects) [I, 21 were removed in various degrees. Thus, for example within the two-level-atom 
approximation, it has been pointed out that the dipole approximation (neglect of retardation 
effects) requires the introduction of an unnatural cutoff frequency and leads to incorrect 
asymptotic results [3]. By removing the dipole and Markov approximation some authors 
calculated asymptotic deviations from exponential decay for a two-level atom (see e.g., 
[3-51, and further references quoted in these works). In the case of Lyman-a spontaneous 
emission, a complete non-Markovian treatment including deviations from exponential decay 
for finite times within the scope of the. two-level atom has been presented in ow previous 
paper [6]. Without investigating the time development of a decaying state, the line shape 
has been studied by Amous and Heitler [7l (who applied a very cumbersome formalism) 
and by Low [SI who used a covariant S-matrix method. However, the non-Markovian 
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effects, which, as will be shown in this paper, change the Lorentzian frequency spechum 
to a quasi-lorentzian one, were not included in their calculations [7 ,8] .  

The objective of this paper is to present a complete (gauge-invariant) treatment of the 
spontaneously decaying state. This treatment, unlike all previous treatments in the literature, 
should yield complete results for the non-Markovian time behaviour and radiative line shape 
including virtual transition effects. In order to achieve this, the two-level approximation 
(appearing in 11-61),  which leads to an incomplete frequency (Lamb) shift (stemming only 
from the real transition to the lower-lying level), should be avoided in our treatment. In 
other words, the aim of the present paper is to include the whole discrete and continuous 
atomic spectrum in our calculations. However, since the inclusion of virtual ('energy- 
non-conserving') transitions automatically leads to divergent results, the renormalization 
problem has to be solved first, by using a consistent method. This has been done in 
our previous paper 191 by applying a self-consistent projection-operator method (SCPOM) 
developed recently [ l o ,  1 1 1 .  

The application of the SCPOM makes it possible to introduce a new physical real- 
transition interaction picture, in which the dynamics caused by virtual transitions and the 
unobservable interaction of the free electron with the vacuum radiation field is eliminated. 
The latter, as has been shown in [9], leads to a natural and unambiguous solution of the 
longstanding renormalization problem in non-relativistic quantum electrodynamics without 
using the conventional concept of mass renormalization, which, as pointed out by Au and 
Feinberg [12], is not unambiguous. The main differences between the mass renormalization 
method and our method can be summarized as follows. 

(i) In our Hamiltonian, from the very beginning, only the experimentally observable 
(physical) m s s  appears (we do not differentiate between observable, bare and electromag- 
netic mass). 

(ii) No unnatural mass-renormaliurtion counter-term (calculated in the second order in 
the charge e )  has to be included in the Hamiltonian. 

(iii) By introducing a new interacrionpicture, in which the experimentally unobservable 
interaction of the free electron with the vacuum radiation field is eliminated, an unambiguous 
and self-consistent renonnalization is automatically performed. 

In the present paper, by introducing this new physica'interaction picture (without 
making dipole, Markov and two-level-atom approximations), including the spin-radiation- 
field interaction term and the term (e2/2mc2)A2(R) in the Hamiltonian (both of which 
were neglected in [I-71) and, finally, taking into account'the effect of a unitary gauge 
transformation (which was not done in [l-7]),  a gauge-invariant, rigorous analytic result 
for non-Markovian spontaneous Lyman-cy decay is obtained. This result, containing the 
exponentially decaying term and a term describing the deviations from exponential decay, 
gives a complete description of the time evolution of the probability amplitude for finding 
the atom in an unstable state. 

Unlike all treatments in the literature [ 1 - 6 ]  (and references quoted therein), our 
exponentially decaying term contains the complete 2P + lsfrequency (Lamb) sh@, which 
is finite (cutoff-independent) and can be explicitly evaluated by taking into account the 
whole discrete and continuous atomic spectrum [9 ] .  

The paper is organized as follows. In section 2, by applying the SCPOM, a gauge- 
invariant treatment of the whole time evolution of a spontaneously decaying atomic state is 
presented. In the new physical interaction picture, without using the mass-renormalization 
concept, finite expressions for energy-level (Lamb) shifts are obtained. In section 3 the 
obtained results are applied for obtaining a complete description of the time evolution in 
the case of the Lyman-cy spontaneous emission. In section 4 a conclusion is drawn. In 
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appendix A the gauge invariance of a level-shift expression, appearing in the calculations 
in section 2, is proved. 

2. A gauge-invariant treatment of the spontaneous emission based on the SCPOM 

The Hamiltonians for the unperturbed hydrogenic atom and the quantized radiation field (in 
the Coulomb gauge) read as 

where Isp is the unit operator in the spin Hilbert space, a*@, A) are the photon creation 
and annihilation operators for the mode ( I C ,  A) and A is the polarization index, The total 
Hamiltonian H reads as 

H = HO + H I  H O  = H~ + H~ (2.2) 

and the interaction Hamiltonian between the atom and the radiation field is given by 

e2 e eh 
- 2 m c ~  mc 2mc I - -A~(R) Hi = --A(R).  P H j  = ---U. B ( R )  (2.4) 

where 

is the vector potential, U is the Pauli spin operator, ek.1 is the polarization vector and 
B = V x A is the magnetic field. 

We now introduce the interaction picture and separate the interaction Hamiltonian into 
two parts: 

H I ( * )  = e(i/n)HorHle-(i/’L)Hnr = e(i/2)H‘t[HRT + HmIe-(i/fi)Hor 

= H m ( t )  + HVT(t) (2.6) 

where HRT is the ‘&-transition’ part (containing the ‘energy-conserving’ transitions to 
lower-lying atomic levels) leading to the decay of a state, and H m  is the ‘virtual-transition’ 
part (containing the ‘energy-non-conserving’ transitions) leading to the energy-level (Lamb) 
shifts. 

The proof of the gauge invariance will be performed in a manner similar to that of 
Aharonov and Au [13], who have proven a general theorem, whose results are also applicable 
to the present case. Therefore, in order to prove the gauge independence of our results, 
instead of H, analogously as in [13], we will use the unitary gauge-transformed Hamiltonian 
I? in what folIows: 

(2.7) g = ,(i/ch)exHe-(i/cfi)ex = HO + 61 
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where 

with a time-independent gauge function x(R). Such gauge functions are very often used 
in quantum optics (see e.g. [14,15] and references quoted therein). 

In the interaction picture we again decompose the gaugetransformed interaction 
Hamiltonian into two parts: 

jjI(t)  = ,dP)Hotfite-O/h)Hot = j j R T ( $ )  + jj"(t) (2.9) 

where 

(2.10) 1 I 
I;rRT@) = e O i W f o f  HI" + z e [ x ,  HI"] e-('/')''' I 

is the 'real-transition' Hamiltonian causing real transitions to lower-lying atomic levels, and 

(2.1 1) 

is the 'virtual-transition' Hamiltonian causing virtual transitions (including the 'energy-non- 
conserving' transitions to higher-lying levels). 

To concentrate our investigations on the dynamics caused by the 'rea!-transition' 
Hamiltonian BRT, we have to introduce a new 'real-transition' interaction picture (RTIP) in 
which the dynamics caused by the 'virtual-transition' Hamiltonian H" is eliminated. The 
dynamics caused by I?" is described by the timedevelopment operator &(t, 0): 

(2.12) 

In the RTIP the Hamiltonian HI" reads as 

",I) = O&(t, 0)I?RT(t)Om(2, 0). (2.13) 

Furthermore, the Schrodinger equation in the RTIP takes the form 

(2.14) 

where 

is the decaying state, with the energy eigenvalue E. (n, 1 ,  m, m, are the principal, angular 
momentum, magnetic and spin-magnetic quantum numbers, respectively, and U denotes the 
vacuum state of the radiation field). Then, the application of the SCPOM [lo, 111 to the 
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above Schrijdinger equation leads to an exact closed equation of motion ,for the reduced 
sfote vector Pl@(t)): 

I 

dt‘PgRT(t, t ) t ( f ,  t‘)[I - PlfiRT(t‘, t’)Pl@(t’)) (2.16) -3.L 
(2.17) 

where 

P =  Inlm,m,,u)(nlm,m,,vl (2.18) 

is our projection operator, I is the Dyson time-ordering operator, I is the unit operator in 
the product Hilbert space ‘U* 8 ‘UR of the atom and radiation field. 

In equation (2.16) it can be easily shown that the application of the second-order 
approximation in the interaction (or in the charge e), the so-called Born. approximation 
(BA), which is equivalent to the self-consistem truncation condition [lo, 11’1, 

(r - P)BRT(t,  f ) ( r  - P) = o (2.19) 

leads to the restricted Hamiltonian [fiRT(t. t)ls: 

[fiRT(t. t)ls = pfi&(t, o)PHRTy)(rs - p)fim(t, o)(P - :P) + HC (2.20) 
which acts in the subspace ‘Hs defined by the state vectors [(HRT)[I@(O)),l = 0, 1). In 
obtaining the above equation we used the fact that as a consequence of the self-consistent 
truncation condition, the gauge-dependent term in fiRT(t) (cf equation (2.10)) vanishes. 

The expression 

Pfim(t, O)P = Pfidt, O)lnlm, m,, u)(nlm, m,, V I  (2.21) 

E can be calculated from the equation of motion for the reduced state vector 
P.%(t, O)lnlm, m,, U) (which can be obtained by applying the SCPOM): 

tm(t ,  t - T) = Texp [ - f 6, dt’(Z - P)dw(t’)] .  

(2.22) 

(2.23)- 

The application of the BA in equation (2.22), which is equivalent to thi: self-consistent 
truncation condition [lo, 111, 

( I  - P ) P ( r ) ( l  -P) = 0 (2.24) 
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leads to the reshicted Hamiltonian: 

[P"(r)lS = Ban + Bb"(r) (2.25) 

(2.27) 

(2.28) 

with the unit operator I& acting in the subspace 'Hh defined by the state vectors 
{(I;")kl@(0)), k = 0,1). 

The above equation (2.22) in the BA and so-called Markov approximation (which consists 
of neglecting memory effects and replacing the upper limit of the time integration with 00 by 
introducing a damping factor e-nr in the integral ( q  + 0 after carrying out the integration)) 
[9-111 reduces to 

nb -" 0) = e(i/~)HOtI;b"e-~."p,xOt 

1 P- -7 [ H ~ + + ~ [ x , H ~ I  (I&-P)+Hc i 

dp'@"(f)) (-i/fi)A~~m)'pI@"(r)) (2.29) df 

(2.30) 

(2.31) 

H y l n i m ,  m,, U) (2.32) 

where AEE(m) (subscript m, is dropped) is the unrenormalized radiative energy-level 
(Lamb) shift stemming from virtual-hansition Hamiltonian X". As will be shown in 
the appendix the expression = AEz'"=),  appearing in equation (2.29). is gauge- 
independent. Therefore, the expression 'P@+ 0)P is also gaugeindependent and reduces 
to 

-"(U=) = ~Em.1 -",2 
AEnIm nlm +''"I, 

AE,,~; -m1- - (nim,m,, ulI;amlnlm,m,,u) 

1 
E, - HO + iq A E ~ '  = lim(nIm, m,, U I I ; ~  

7-0 

pOh(r, O)P = pu&( t ,  O)P = eofi)'*'zwp. (2.33) 

However, since Uyy(t, 0) contains the physically unobservable dynamics of the free 
electron interacting with the radiation field, a new 'physical' (bound-electron) interaction 
picfure, in which this dynamics is eliminated, has to be introduced. This, as has been 
shown in 191, leads to a quite nafural solution of the renormalization problem. That is to 
say, without using the convenrional mass-renomlizafion concept, which is not unambiguous 
[ 121, fnife  Lamb-shift resulrs can be obtained. The time-development operator describing 
the unobservable dynamics of the free electron is given by 

d U ~ ( f ~ O )  = -tHfm(t)Uh(r, 0) (2.34) 
dr fi 

where 

(2.35) 
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= 
P U d t ,  O)lnlm, ms. U) describing the time evolution of the reduced state vector under 
the influence of the frwelectron-field interaction [9] reads as 

In the BA and Markov approximation, the equation of motion for 

where AE,? is the self-energy of the free electron: 

A E , ~  = AE;::' + AE::~ 
with 

(2.36) 

(2.37) 

ez 
2mc2 

A E Z '  = (nlm[-AzlnIm) (2.38) 

Ghee = (-1)[K2/(2m) - (K P ) / m  + cK + iq]-' (2.40) 

K = hk hl = e k , l *  P hz = ; U .  (hk x er,A). (2.41) 

PI@-VT(t))pI e"/'"AE%~*vT(t)). (2.42) 

pu+ Vd t ,  0)P e(i/fi)'AGxp (2.43) 

(2.4) 

Now we can introduce the physicaZ interacfion picture: 

In this new picture equation (2.33) reduces to 

where A E Z  is the 'renormalized' Lamb shift stemming from virtual transitions: 

with 
A E Z  = AE,,, - AEiL 

as the total Lamb shift [9]: 

(2.45) 

where 
Gbound = [En - (P  - K)'/(2m) - V(R) - cK + iq1-l (2.46) 

and with AEym as the Lamb shift stemming from real transitions to lower-lying levels: 

HRTInZm,m,, U). (2.47) 
1 

En - HO + iq 
AEFm = lim(nlm,m,,ulHRT 

V-tO 
In obtaining equation (2.45) we used the fact that because 

(2.48) 
(see equations (2.31), (2.38) and (2.26)) the term AZ does not give any contribution to the 
total Lamb shift. 

Since it can be shown, quite similarly to the above, that the expression 
(Is - P)&(t, O)(Is - P) is also gauge-independent, it follows, finally, that the restricted 
real-transition Hamiltonian given by equation (2.20) is gauge-independent as well. There- 
fore, the equation of motion for the reduced state vector, equation (2.16), takes the following 
reduced gauge-invariant form in the BA: 

vT.1 - h . 1  
'En[, -AEntm 

(2.49) 

In the next section this equation will be applied to the case of spontaneous Lyman-u decay. 
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3. Complete solution for the time evolution in the case of Lyman-cy spontaneous 
emission 

Now, we will apply the equations and results derived in the preceding section to the case 
of spontaneous Lyman-ru (2P + IS) decay: 

I+(O)) = 12P) @ Iu) = In = 2, I = 1, m, m,) @ Iu) (3.1) 

I l S ) = [ n = 1 , 1 = O , m = O , m , ) .  (3.2) 

In OUT case the projection operator takes the form 

P = 12P)(2PI @ Iu)(ul (3.3) 

and the unit operator acting in the subspace 'Hs reads as 

(3.4) 

where lo) are the one-photon radiation-field states for a photon with the frequency o, and 
the quantum numbers j = 1, m and 7 = 0 (electric multipole field). Then, by inserting the 
following equations (cf equation (2.43)): 

PU&(~ ,  O)P = PQP, UIU&(~,  O)IZP, v )  % Peofi)lAEg (3.5) 

A E E  = 0 (3.6) 

into equation (2.20). the restricted Hamiltonian (which follows in the BA) takes the reduced 
form 

(Is - P)U,(i, O)(Is -P) = (Is - 'P)e(-ifi)fAE1s 

[HRT(t ,  t)ls = ~ ~ d o H ~ p , ~ S ( o ) e i ( ~ - ~ ) ' ~ 2 P ) ~ 1 S [  @ Iu)(ol +€IC (3.7) 

where 

00 (l/fi)(Ezp - E I S )  Go 00 + A00 vT A m y  (l/fr)(AEZ - AEls) (3.8) 

and the transition matrix element HZP,IS(O) is given by [16,6] 

Hzp,~~(o) = (A/2n)1/2fi(-io'/2)[1 + ( O / Q ) ~ ] - ~  (3.9) 

with h = y/wo ( y  is the Einstein coefficient for spontaneous Lym-cy transition) and 
Q = 3c/(ko) (a0 is the Bohr radius). Therefore, equation (2.49) reduces to a closed 
equation of motion for the probability amplitude 

bZP(T) = (2PI 8 ( v l~ l+ -o ) )  (3.10) 

of finding the atom in the initial state 172) and zero photons in the radiation field 
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where 

276 f (4  = ~ I H Z P , . l S ( ' " ~ l ~  (3.12) 

is the natural cutoff function. Since this equation is identical to equation (2.1) [6] (with the 
significant difference that instead of 00 the virtual-transition corrected frequency i& has to 
be used throughout), all equations in section II of [6] can be used in the present case as 
well. Thii leads to the result 

bzdt) = W f )  + W t )  (3.13) 

where 

R(t) (1 + AR)@iote-iu-lt l A ~ l  < 10h (3.14) 

is the residue of the so-called Weisskopf-Wigner pole (lying on the Riemann sheet -1): 

U-, =wo+Am-iy /Z+A.  lAu/u-ll ~ 4 . 1  x (3.15) 

Am = Amo VT +A@ Am:= = - - - "' - - ' In[:] 
24n 64 2n 

(3.16) 

describing the Markovian behaviour (exponential decay). 
frequency shift calculated in [9,17]: 

Here A m  is the complete 

Am/% AEzpfh - AEis/h = -8132.8 MHz (3.17) 

AEls/h = 8136.9 MHz AE2plh = 4.1 MHZ.  (3.18) 

(h is the Planck constant). In the above equation (3.16) Am:' is the Lamb shift stemming 
from the real 2P + 1s transition and can be calculated directly in the usual second-order 
perturbation theory as wek 

(PV is the Cauchy principal value). The solution of the integral: 

0 - U  
0 

(3.20) 

(which has been given in [61, equations (2.5)-(2.7)) yields precisely the result of equation 
(3.16) for A# if U = 00 is inserted. Further, D(t)  describes the non-Markovian behaviour 
(deviation from exponential decay): 

with M(t) as the asymptotic main term and the error estimate: 

IAD(t)/M(t)l < 16.6 x IO-' f > s. (3.22) 
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Finally, as in section 5 of [18], by suitably deforming the path of integration in the 
Laplace inversion expression for bzp(t) (cf equation (2.8) in @I), the following integral 
representation for btp(t) can be written down: 

(3.23) 

with a quasi-lorentzian frequency spectrum 

S(O) = ( h / k ) f  (u)/{[u - (WO + Aw) + ( h / 2 ~ ) J ( ~ ) l *  + (A/2)'f2(~)) (3.24) 

where both the decay rate h f ( w )  and the frequency shift 

J(w) I(@) - i r f (u)  - [ I ( w )  - irf (oo)] (3.25) 

( I @ )  is given by equation (3.20)) depend on the the frequency W .  However, since these 
frequency-dependent functions are multipled by a very small factor h M lo-*, the effect is 
weak and the usually used constant decay rate Af(00) and J(o0)  = 0 can be applied as 
good approximations in a relatively large frequency interval around WO. 

4. Conclusion 

The following conclusions may be drawn. Here, we have presented a complete seF- 
consistent gauge-invariant treatment of the single-atom spontaneous emission problem 
(including unambiguous renormalization) within the scope of non-relativistic QED. For the 
first time to our knowledge, by taking into account virtual transitions and without ignoring 
non-Markovian, retardation and electron-spin effects, a gauge-invariant analytic result for 
the whole time evolution of the probability amplitude &(t) for finding the atom in the 
excited state I2P) has been derived. Moreover, in the BA it has been shown that, after 
introducing the physical bound-electron interaction picture, the term Az does not contribute 
at all, since, in the BA, its conhibution is the same for both bound- and free-electron cases. 

The comparison of our results with those of previous papers treating the same problem, 
without investigating the gauge invariance (see [ 1 4 ]  and references quoted therein), shows 
that, instead of the incomplete real-transition frequency shift A@ (appearing in these 
papers), our present expressions for bzp(t) (see equations (3.13H3.16)) and the radiative 
line shape (see equation (3.24)) contain, for the first time, the correct (comp1ete)fmite non- 
relativistic frequency shift A*, which agrees fairly good with the experiment [19]. The 
comparison with the work of authors who treated only the radiative line shape [7,8], without 
investigating the time evolution of the decaying state, shows that the non-Markovion eflects 
(missing in [7,8]) led to a quasi-lorentzian frequency spectrum in our equation (3.24). 
where both the decay rate as well as the frequency shift depend on the frequency U.  
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Appendix. Proof of gauge independence of expression AETAwr) 
In this appendix we prove the gauge-independence of the expression AEn,,,, V r c w  appearing 
in equation (2.30). It holds that 

A E  = AE,, -Vr(unr) - AEnE(& 

= (AEZ~ - AEZI) + ( A E F  - A E Z ~ )  (-41) 

= ( W ) l ~ ~ " l ~ ( O ) )  IWO) = Inlm.m, 4 ('47.1 

(-43) 
e2 

A E Z '  = C@(0)l~A21W90)) 

By inserting equations (A6HA8) into equations (A2) and (A4). equation (Al) reduces to 

( A 9  

where we used the identity 

[ x ,  ~ " 1  = [ x .  H" - E, - id  WO) 

Since, in equation (A9), whenever Xo - E, - iq acts on /@(O)), we can replace it by zero 
in the limit q + 0, it follows immediately that 

A E  =O.  " (All) 
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